Infectious Disease Transmission and Vaccination Strategies in Mass Gatherings: What Lessons Have We Learned from Meningococcal Transmission in Hajj?

17th Conference of the International Society of Travel Medicine (CISTM17)

Presenter: Amine Amiche¹, PhD

Evidence generation lead, Sanofi Pasteur

Co-authors: Laurent Coudeville², Ashrafur Rahman³, Julien Arino⁴, Biao Tang⁵, Ombeline Jollivet², Alp Dogu¹, Edward Thommes⁶, Jianhong Wu⁵

1. Sanofi Pasteur, UAE; 2. Sanofi Pasteur, France; 3. Oakland University, US; 4. University of Manitoba, Canada, 5. York University, Canada, 6. Sanofi Pasteur, Canada

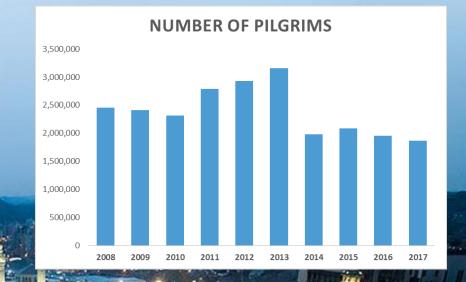
Disclosure

- This study is supported by the NSERC/Sanofi Industrial Research Chair Program in Vaccine Mathematics, Modelling and Manufacturing
- Amine Amiche, Alp Dogu, Ed Thommes, Laurent Coudeville, and Ombeline Jollivet are employees of Sanofi Pasteur
- The remaining authors report no conflict of interest

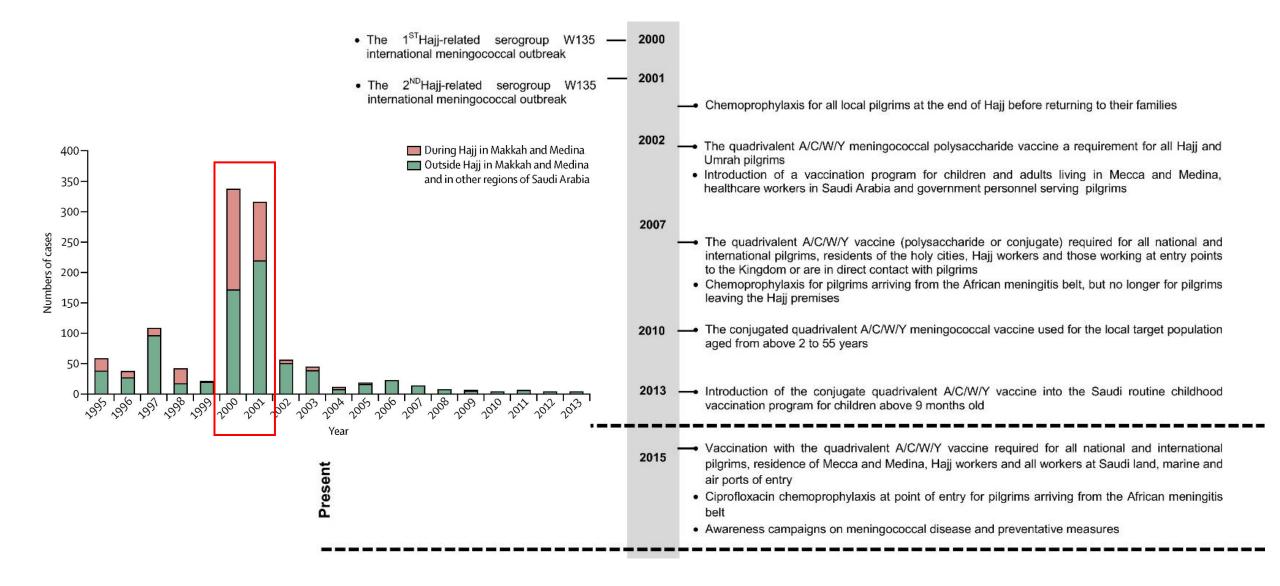
Introduction

Mass gatherings and infectious disease

- Mass gatherings (MGs) are characterized by a high concentration of people at a specific time and location.
- May lead to increased:
 - risk of importation of infectious agents in the hosting country
 - risk of outbreak with an unexpectedly high mortality or morbidity
 - risk of international disease spread



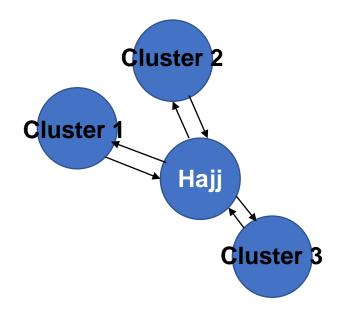
This Photo by Unknown Author is licensed under CC BY-NC-ND

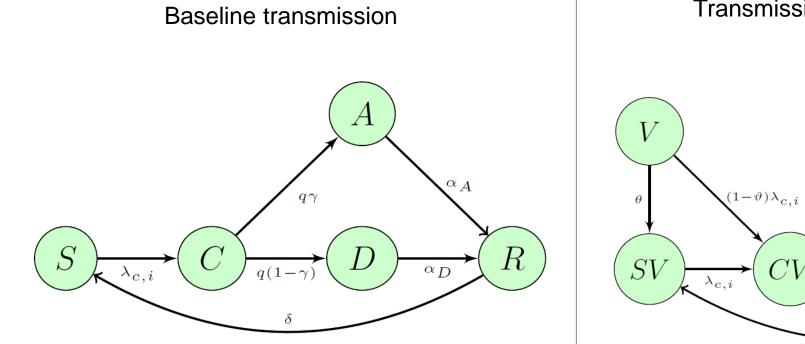

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

- Hajj is the holy pilgrimage for Muslims
- <u>~ 2-3 million people gather in 0.65 km² area</u>
 located in Makkah
- **Pilgrims arrive from** ~ 180 countries
- Different age groups (majority >40 yo)

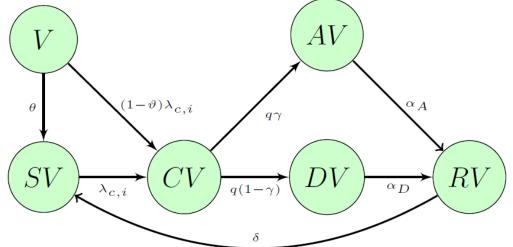
Countries Groups	Ratio	1438
GCC countries	1.9%	35,017
Other Arab Countries	24.0%	443,372
Asian Countries Excluding Arab Countries	58.1%	1,075,485
African Countries Excluding Arab Countries	10.2%	188,624
European countries	4.6%	85,468
North and South America countries and Australia	1.2%	23,057
Total	30.8%	1,851,023

Meningococcal outbreaks shaped vaccination policy for Hajj


Questions


- What is the impact of the mass gathering event, Hajj, on the transmission of meningococcal disease ?
- What is the impact of different vaccination coverage and efficacies on the probabilities of outbreaks ?

Methodology

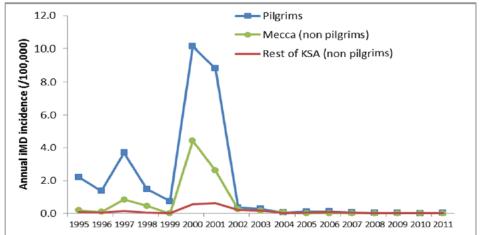

The Model

- A compartmental, meta-population, and age structured
 - to simulate meningococcal transmission among pilgrims in Mecca, whole KSA, and other pilgrims' origin.
- Each cluster shares the same representation of the infection and demographic processes.
- The processes are simulated following a set of ordinary differential equations

Transmission with vaccination

Susceptible(S), Short-term carrier(C), Asymptomatic carrier(A), Diseased(D), and Recovered(R)

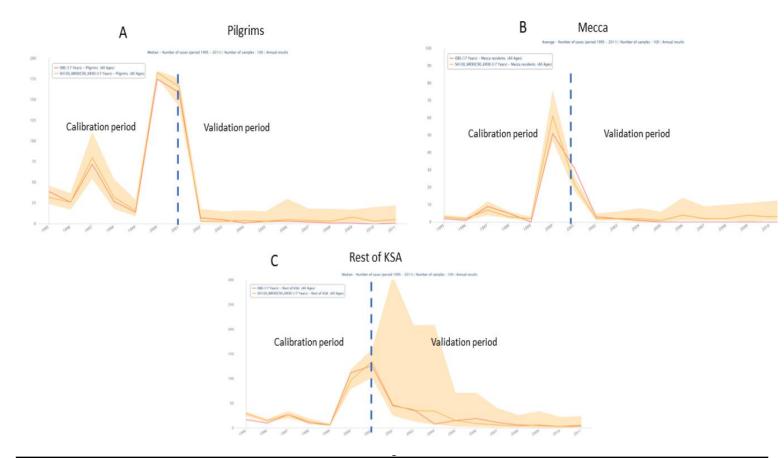
Populations were clustered in 5 groups


Table 1: Cluster information.			
Clusters	Country or territories	Carriage rate (%)	Source
Cluster 1: Mecca	Mecca (Hajj city)	4.2 [2.0; 17.8]	Calibrated
Cluster 2: KSA outside Mecca	Kingdom of Saudi Arabia (Hajj country) except Mecca	$1.2 \ [0.5-3.2]$	Calibrated
Cluster 3: High endemic	African meningitis belt countries (Benin, Burkina Faso, Cameroon, Central African, Republic, Chad, Ivory Coast, Congo, Democratic Republic of Congo, Ethiopia, Gambia, Guinea, Ghana, Mali, Mauritania, Niger, Nigeria, Senegal, South Sudan, Sudan, Togo)	6.3	[29]
Cluster 4: Medium endemic	South Africa, Asia (except Turkey, Malaysia, the Philippines, Indonesia, Russia, China), Arabic Non-GCC	4.0	[29]
Cluster 5: Low endemic	Gulf Cooperation Coucil countries (except KSA), Europe, Americas, Australia, Turkey, Malaysia, The Philippines, Indonesia, Russia, China	2.0	[29]

Key model parameters (base case)

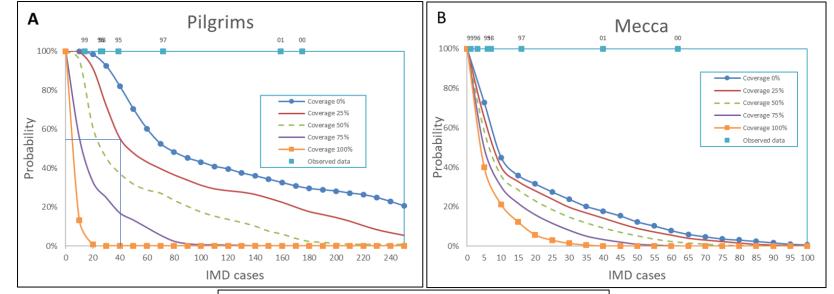
Table 2: Disease and vaccine parameters			
Parameters	Definitions	Values	Reference
q	Rate of moving out from short-term carriage status $(year^{-1})$	52	[11]
γ	Proportion of short-term carriers remaining asymptomatic (%)	99.98	[9]
α_A	Recovery rate from asymptomatic carrier status $(year^{-1})$	1	[12], [9]
α_D	Recovery rate from disease status $(year^{-1})$	52	[11]
ϵ	Relative infectiousness IMD modification parameter	0.5	Assumed
δ	Waning rate of recover-induced immunity $(year^{-1})$	0.0839	[21]
θ	Vaccine efficacy (%)	93	[41]
θ	Waning of vaccine induced immunity $(year^{-1})$	0.1	[21], [10]
	Age for routine vaccination schedule in KSA (year)	1	[43]
	Routine vaccination coverage rate $(\%)$	96	[25], [42]

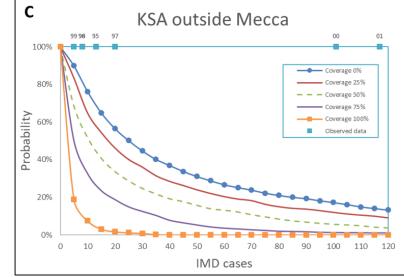
Model calibration


- Using the historical epidemiological data from meningococcal surveillance, the model was calibrated to identify the best fit of the surveillance data from 1995-2001, and was validated from 2002-2011
- Cluster-specific transmission parameters: Beta_c
- Hajj-specific transmission parameters: Beta_H
- year-to-year variation in IMD transmission

$$\lambda_{p} = \frac{\sum_{c=1}^{N} \sum_{j=1}^{n_{c}} \beta_{H} \beta_{y} \beta_{c} (C_{c,j}^{p} + A_{c,j}^{p} + CV_{c,j}^{p} + AV_{c,j}^{p} + \epsilon DV_{c,j}^{p})}{\sum_{c=1}^{N} \sum_{j=1}^{n_{c}} P_{c,j}^{p}}$$

 β_H corresponds here to the specific Hajj density effect


Results

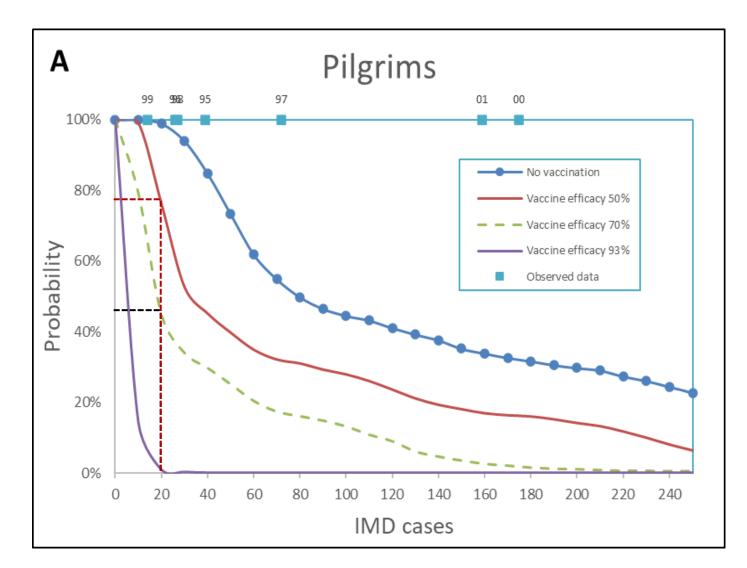

Calibration results and density effect

Parameter	Description	Central	Range
		estimate	
β_H	density effect in Hajj	78.5	[68.5, 89.6]
β_L	baseline transmission	12.5%	[6.0, 25.5]
eta_y	year-to-year transmission variability	80.8%	[26.2, 209.2]

Impact of lack of vaccination compliance among pilgrims

Decrease of vaccination coverage among pilgrims could lead to outbreaks among pilgrims, yet also among other populations in Mecca and KSA

Impact of routine vaccination on Hajj-associated IMD


Routine vaccination across KSA reduces the number of IMD cases due to Hajj. Routine vaccination in Mecca only have small impact on Hajj-related IMD across the country

	Current routine vaccination in KSA (1y.o.)	Routine vaccination only in Mecca	No routine vaccination in KSA
2012-2021	99	114	138
	[40, 220]	[41,301]	[49,341]
2022-2031	154	233	284
	[62, 397]	[77,1113]	[95, 1218]
2052-2061 (+40y)	399	729	853
	[140,811]	[147,2331]	[195,2522]

Table 4: Impact of routine vaccination on the number of IMD cases per decade in the whole KSA.

The impact of vaccine efficacy on IMD outbreaks

 Reduced vaccine efficacy would significantly increase the risk of outbreaks during Hajj

Interpretations and Conclusions

- Hajj is a catalyst for IMD transmission not only among pilgrims, but also among the populations from which the pilgrim are originating
- Higher density significantly increases the transmission of IMD
- Maintaining a high vaccination rate among pilgrims is important to prevent outbreaks during Hajj and outside
- Maintaining a routine vaccination in KSA is important to reduce Hajj-associated outbreaks
- Efficacy of the vaccine plays an important role in reducing the impact of Hajj

Limitations

- Simplified IMD transmission in Hajj:
 - only 5 clusters were considered in our model whereas pilgrims originate from more than 100 countries
 - No serogroup-specific modeling
- Data for calibration lack granularity to better express the epidemiological changes overtime and impact of vaccination
- Other preventive and non-pharmaceutical interventions were not considered

Thank you

Contact: amine.amiche@sanofi.com

